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Abstract

In this article, we show, within a simple search model framework, that the choice
of unemployment insurance implemented by a benevolent social planner depends
on the periodicity of the public choice, because of time-inconsistency issues. We
build an analytically tractable model where unemployment benefits are negatively
affected by the periodicity of the public choice, and we show how a redistribu-
tive channel is responsible for this property. We then build and numerically solve
a model of time-consistent public choices where the public authority, whenever
choosing the optimal level of unemployment benefits, takes its future choices as
given. Another channel is brought to light, explaining why here, too, benefits are
negatively affected by the choice periodicity.

1 Introduction

In this article, we wish to raise the following question: do time consistency issues, re-
lated to the impossibility of the public insurance system to commit itself to future public
choices, and to the repeated pattern of this public choice, affect the equilibrium unem-
ployment benefits? Our analysis, built on both a theoretical approach, and a calibrated
and simulated model, shows that an economy where the UI choice would be less fre-
quently brought into the political debate, would be characterized by a lower level of
unemployment benefits on average, and a higher degree of degressivity.

Time-consistency issues are well known to apply to monetary policy -the rules vs.
discretion debate- and to optimal fiscal policy (see Kydland and Prescott (1977) both
for the principle of time-inconsistency, and for its application to the monetary policy).
Time-inconsistency arises because, when choosing today a certain value for a future, say,
tax rate, this is likely to affect the behavior of agents over the whole time span separating
the present from this future date. Once this date is reached, the public authority may
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find it worthwhile to reset the tax rate, because its impact on agents behavior may be
different from then on. If the tax rate can be made time-dependent, it should be all the
smaller as the agents’ reaction to it is large (the tax base being very elastic), which is the
case of future tax rates on capital, but not of current ones.

Redistributive schemes are also quite likely to give rise to time-inconsistency. For a
given agent, this is obvious: today’s choice over the current and future extent of redis-
tribution depends on one’s current state (whether one’s current endowment is large or
small), and in the future, there is no reason for one’s individual endowment -let alone
the global distribution of endowments- to remain unchanged. Public choices based, for
example, on the median voter, depend, among others, on the distribution of endow-
ments, on agents’ mobility, and on the frequency of the public choice. Wright (1986)
points out the redistributive role of UI, this time-inconsistency property, and the impact
of the public choice periodicity on the equilibrium unemployment benefits replacement
rate. Hassler and Mora (1999) study how the nature of labor market flows -the average
durations of employment and unemployment- affects the equilibrium replacement rate
chosen by the median agent, when choices on UI are operated at a given periodicity.
Both articles ignore the potential disincentive impact of UI, as the probability transitions
between employment and unemployment are exogenous to the workers. Hassler et al.
(2005) analyze the impact of UI on workers mobility, when moving may help to find a
new job, and the interactions between the majority voting procedure on UI benefits and
the degree of workers mobility. As UI affects the decision of workers to move or not,
unemployment benefits do affect the level of the unemployment rate. The impact of the
periodicity of the public choice is however not analyzed, and if it were, it would be driven
by redistributive channels and the preferences of the median voter over redistribution,
similar to those of Wright (1986) and Hassler and Mora (1999).

The question of the optimal definition of unemployment insurance, regardless of these
repeated public choice issues, but based on the optimal trade-off between insurance and
incentives, has given rise to a very rich literature. It started with Shavell and Weiss
(1979), where, within the principal-agent framework, the question of the UI time-profile
which would minimize the cost of providing a given intertemporal utility to the unem-
ployed, was raised. It was later extended by Hopenhayn and Nicolini (1997) who allow
for a variable tax on re-employment. Both articles prove that, in the absence of individual
savings, and when moral hazard takes the form of an unobservable search effort, the opti-
mal time-profile of UI is degressive. More recently, much attention has been devoted to a
more refined characterization of the optimal time-profile for UI when agents can save and
for a specific type of utility function (CARA utility functions in Werning (2002)). In par-
ticular, the optimality of a degressive time-profile, first put forward by Shavell and Weiss
(1979), does not carry over to an environment where hidden savings are taken into ac-
count (Werning (2002) and Shimer and Werning (2008)). The different implications of
considering either a pure search model with wage draws, or a model where the wage level
is unique, and agents choose their search intensity, are also thoroughly explored (again,
Werning (2002) and Shimer and Werning (2008)).

Parallel to these studies based on the principal-agent framework, quantitative macro
models have also been built, initially to allow for private financial savings. Hansen and İmrohoroğlu
(1992) first introduced unemployment risk in a model where agents can save, but do not
have access to an insurance market against income risk. Their article essentially fo-
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cused on the interaction between moral hazard -the ability, for unemployed, to turn
down job offers without being monitored- and the saving behavior, working as a self-
insurance device. A large number of articles followed (Pallage and Zimmermann (2001),
Acemoglu and Shimer (2000), Costain (1997)), among which Wang and Williamson (2002)
numerically computed the optimal time-profile of UI with private savings, and showed
that this profile was non-monotonic. Although the two different approaches -principal-
agent vs. simulated macro models- differ in the methodology used, the questions regarding
the impact of the definition of UI on the degree of insurance and the disincentive effects
simultaneously generated, are identical, as well as the underlining intuitions.

This article reconsiders the optimal trade-off between insurance and incentives, through
the time-inconsistency issues which arise when the public choice of UI is operated by a
benevolent social planner. It is therefore located at the crossroads of these two strands
of the literature. While our approach shares with Wright (1986) and Hassler and Mora
(1999) the public choice dimension, it does, contrary to these two papers, take the dis-
incentive impact of UI into account. In particular, the utilitarian criterion as the public
choice function gives rise to time-inconsistency, while its application was not relevant in
the two papers, which were grounded on median agent voting procedures. We wish to
shed light on the reasons why the trade-off between insurance and incentives depends on
the periodicity of the public choice. To this end, we consider a search model, where unem-
ployed freely choose their search intensity. Apart from the public choice, the framework
is standard in the theoretical literature on the optimality of UI.

In the absence of a commitment technology, the current public choice, known to
apply for a given time span, is likely to depend on the choice periodicity. Indeed, in the
case of unemployment insurance, the periodicity will affect both the disincentive effect
of a given increase in the replacement rate, and the obtained insurance -and, in some
cases, pure redistributive- gains. In particular, when an unexpected new increase in
the replacement rate immediately applies, it does, at least for the current period, give
rise to pure redistribution, with no disincentive impact, as only future unemployment
benefits affect the current search effort of the unemployed. However short-lived this gain
may be, it will be part of the global trade-off faced by the public insurance agency; in
particular, this gain, experienced only at the current date, does not depend on the public
choice periodicity. As for the disincentive effect of UI, it will, quite intuitively, be all the
higher, as the public choice periodicity is greater. Consequently, the periodicity of public
choices will affect the relative weight of the pure redistributive mechanism: the shorter
the periodicity, the higher the temptation to benefit from current redistributive gains,
and the higher the equilibrium replacement rate. We develop a simple analytical model
to highlight this trade-off, and the impact of the periodicity of the UI choice. For the
model to be fully tractable, we however do not consider explicitly repeated choices, but
resort to a specific equilibrium definition which captures, hopefully, the salient features
of repeated choices, without handling them upfront.

We also shed light on another, less intuitive, channel, through which the public choice
periodicity affects the equilibrium replacement rate. To this end, we turn to a fully time-
consistent approach. The equilibrium definition follows that of papers based on tractable
(either analytically, or numerically) versions of recursive politico-economic equilibria,
which address the issue of time-consistency of public choices by considering that no
commitment is possible for the public authority. Whenever a current choice is decided
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upon, expectations regarding future choices are made, and at the equilibrium, these
expectations turn out to be correct (see Krusell et al. (1997) for a general presentation)1.

The model is calibrated and simulated, for various public choice periodicities. The
above-mentioned redistributive channel is neutralized, by considering that when a new
choice for the replacement rate is made, it will apply only from the next period on. The
simulations show that the equilibrium replacement rate is, here also, a decreasing function
of the public choice periodicity. We then numerically show that another mechanism is at
work: the disincentive impact of an announcement of a future increase in the replacement
rate is all the greater, as the increase is expected to take place in a more distant future.
Finally, we illustrate the impact of the public choice periodicity on the equilibrium UI
time-profile -considering a basic time-profile consisting of two different replacement rates
(one for short term unemployed, and one for long term ones). The equilibrium time-
profile of UI is more degressive, when the choice on UI is repeated less often. The average
level of unemployment benefits, however, is modestly affected by the frequency of the
public choice.

The rest of the article is structured as follows. Section 2 presents and solves the
analytical model. Section 3 presents the fully time-consistent model, its calibration, and
the various simulations which are implemented. Section 4 briefly concludes.

2 A simple analytical model

2.1 Households preferences

The economy consists of a continuum of households of measure one, who either work, or
are unemployed, at each date. Households preferences are represented by a time-separable
additive expected utility, which writes:

E0

(
∞∑

t=0

u(ct)− g(πt+1)

)

where ct and πt+1 respectively denote date t consumption and the probability to be
hired at the beginning of date t + 1. The instantaneous utility u(c) is such that u′(c) >
0, u′′(c) < 0. By assumption, savings are precluded. Consequently, households consume
their entire income at every period. At any given date t, all agents –unemployed and
employed– choose their probability of being hired at the next period, πt+1. This assump-
tion is equivalent to stating that jobs last for a single time period, and that employed
and unemployed agents search with the same efficiency. It also implies that tomorrow’s
unemployment rate Ut+1 = 1− πt+1.

The probability of being hired entails a disutility g(πt+1) with the function g such
that g′(0) = 0, g′(π) > 0 and g′′(π) > 0 for π > 0, and

lim
π→π

g(π) = +∞

1This formulation of the equilibrium, requiring the consideration of subtle dynamics, has, among
others, been applied to redistributive questions (Krusell (2002)).
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with π a constant parameter strictly below 1. This assumption amounts to impose that,
no matter what the current search effort is, the probability of being unemployed tomorrow
is bounded below by a strictly positive value.

When employed, households earn an exogenous wage w and pay taxes τt. Unem-
ployed households receive benefits b = ρtwt, independent of the duration of their current
unemployment spell.

The expected intertemporal utility of both types of agents can be formulated using the
standard Bellman equations. The current state of an agent consist of her current employ-
ment status (e for employed, u for unemployed), and the current state of the economy.
The latter comprises the current unemployment rate Ut and the current replacement rate
ρt. We therefore have:

V t
e = Ve (ρt, Ut) = max

s
{u(w(1− τ(ρt, Ut)))− g(πt+1)

+ β[πt+1(EtVe(ρ̃, Ut+1)) + (1− πt+1)(EtVu(ρ̃, Ut+1))]}

V t
u = Vu (ρt, Ut) = max

s
{u(ρtw)− g(πt+1)

+ β[πt+1(EtVe(ρ̃, Ut+1)) + (1− πt+1)(EtVu(ρ̃, Ut+1))]}

where tomorrow’s replacement rate ρ̃ is not known with certainty, as of date t (to be
explained below). The chosen unemployment exit-rate (or, equivalently, the chosen search
effort) satisfies the following first-order condition2:

−g′(πt+1) + βEt (Ve (ρ̃, Ut+1)− Vu (ρ̃, Ut+1)) = 0

which simplifies to:

g′(πt+1) = βEt ((u(w(1− τ(ρ̃, 1− πt+1)))− u(ρ̃w)))

where Ut+1 has been expressed as a function of the current effort πt+1. From this
expression, it is straightforward to notice that the search effort only depends on the
process governing ρ̃. In particular, tomorrow’s unemployment rate is independent of
today’s.

2.2 The unemployment insurance

Unemployment insurance is compulsory, and financed by contributions levied on the gross
wage w. The budget of the public insurance system is assumed to be balanced at every
date. That is:

wτt(1− Ut) = ρtwUt

This leads to the following expression for the tax rate

τt = τ(ρt, Ut) =
ρtUt

1− Ut

τ being a function of two variables, we further define its two partial derivatives as:

2The second order condition is verified, given the assumption on g(πt+1).
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∂τ(ρ,U)
∂ρ

= τ ′1(ρ, U) =
U

1−U
∂τ(ρ,U)
∂U

= τ ′2(ρ, U) =
ρ

(1−U)2

2.3 The choice over unemployment benefits

The replacement rate ρt is chosen by the public insurance agency at the beginning of the
initial date, t = 0. This replacement rate applies with certainty at the current date, and
with probability λ, it will be kept next period, and so on, from a time period to the next.
The replacement rate applies to all unemployed at t = 0, even those who were already
unemployed at the previous period: this new policy is therefore retroactive3.

The agency chooses the replacement rate, so as to maximize the utilitarian criterion,
evaluated at the current date. However, this choice will apply only for a limited time span,
and the insurance agency expects the replacement rate to be thereafter reset to a constant
level, ρ. Consequently, the public choices are not repeated in this setting, and are not
time-consistent. However, as will become clearer, the temptation to deviate toward higher
unemployment benefits, and its dependence on the frequency of the political choice, will
be present, and these channels are also at work in the full time-consistent approach.

From here on, time subscripts for the replacement rate will be dropped: at any date,
either the replacement rate is still that chosen at date t = 0, denoted ρ′, or it has reverted
back to its exogenous long-run level, ρ. Given the time-structure for the public choice,
the first-order condition on the search effort at date t = 0 is:

g′(π1) = βE0 [λ(u(w(1− τ(ρ′, U1)))− u(ρ′w)) +(1− λ)(u(w(1− τ(ρ, U1)))− u(ρw))]
(1)

Apart from the exogenous parameters, the search effort depends on both ρ and ρ′.
The definition of the equilibrium (see below) requires to consider marginal deviations of
ρ′, for a given ρ. These two replacement rates will therefore not be treated symmetrically.
Next period’s unemployment rate can be written as a function of ρ′, parameterized by ρ.
To simplify the notations, the reference to ρ will be dropped in the following calculations:

U1 = ûρ(ρ
′) = û(ρ′)

The value functions Ve and Vu can then be expressed more explicitly:

Ve (ρ
′, U0) = max

π1
{u(w(1− τ(ρ′, U0)))− g(π1) + β[π1(λVe(ρ

′, û(ρ′)) + (1− λ)Ve(ρ, û(ρ
′)))

+ (1− π1)(λVu(ρ
′, û(ρ′)) + (1− λ)Vu(ρ, û(ρ

′)))]}

3In the real world, unemployed usually sign a contract with the public administration in charge of the
UI program at the beginning of their unemployment spell. This assumption is therefore counterfactual,
but keeping track of different types of unemployed -those with replacement rates chosen in the past, and
the newly unemployed for which the current choice on the replacement rate would immediately apply-
would be very burdensome. Besides, only deviations from the original contract which are not favorable
to the unemployed would be opposed by them. As will become clear later on, frequent public choices,
on the opposite, lead to temptations to deviate toward higher benefits, which unemployed would gladly
accept.

6



Vu (ρ
′, U0) = max

π1
{u(ρ′w)− g(π1) + β[π1(λVe(ρ

′, û(ρ′)) + (1− λ)Ve(ρ, û(ρ
′)))

+ (1− π1)(λVu(ρ
′, û(ρ′)) + (1− λ)Vu(ρ, û(ρ

′)))]}

When the insurance agency sets the replacement rate, the current state of the economy
is obviously a crucial determinant. Here, the state of the economy is entirely described by
the current unemployment rate, U0. The program of the public insurance agency writes:

max
ρ′

W0 = (1− U0)Ve(ρ
′, U0) + U0Vu(ρ

′, U0)

The first order condition for the public insurance agency program is:

(1− U0)
dVe(ρ

′, U0)

dρ′
+ U0

dVu(ρ
′, U0)

dρ′
= 0 (2)

2.4 The equilibrium

As mentioned earlier, the political choice occurs only at date t = 0, and everyone knows
that the replacement rate will be indefinitely set at ρ once the one-time choice no longer
applies. Given initial conditions -consisting of the initial unemployment rate U0-,and
given ρ, the insurance agency will choose to deviate and opt for ρ′ which is the solution
of the previous equation.

We define the politico-economic equilibrium as the vector (U0, ρ
′) such that:

• the initial unemployment rate U0 is the only one compatible with ρ′ = ρ, and the
optimality condition (1): U0 = û(ρ),

• given U0, and for a future constant replacement rate ρ, the agency finds it optimal
not to deviate from its previously chosen replacement rate, that is, ρ′ solves equation
(2) with ρ′ = ρ.

The equilibrium has the desired property that it is stable with respect to the political
process: if ρ has been applied in the past without any deviation from it, and if the
public insurance agency has the possibility to deviate at date t = 0, it will choose not
to. What lacks in this simple setting, as compared to a fully sketched time-consistent
political choice, is (i) the fact that we do not know how the economy has reached its
initial state and (ii) the repeated public choice. Indeed, the public choice only occurs at
date t = 0, and is not expected to take place in the future. However simple this economy
may be, it will be suited for (i) recovering the Baily-Chetty (Baily (1978) and Chetty
(2006)) optimality condition on the replacement rate and (ii) underlining the impact of
the periodicity of the public choice (the value of λ) on the short-run temptation to deviate
toward higher replacement rates and, in turn, on the equilibrium replacement rate.

Our goal here consists in analytically characterizing the impact of the expected dura-
tion of the change in the replacement rate on the equilibrium replacement rate.
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2.5 Recovering the Baily-Chetty optimality condition

We can state the following proposition:

Proposition 2.1. At the equilibrium, the necessary first order condition for the maxi-
mization of the utilitarian criterion is:

u′(ρ′w)− u′ (w(1− τ(ρ′, U0)))

u′ (w(1− τ(ρ′, U0)))
=

βρ′û′(ρ′)

U0(1− U0)
(3)

Proof. See Appendix B.1.

This condition is the Baily-Chetty optimality condition, adapted to this framework.
The left-hand side is the relative gap in terms of marginal utility, between an employed
and an unemployed. The lower it is, the better is the public insurance against the un-
employment risk. The right-hand side indicates how costly, in terms of disincentive, the
insurance is. At the optimum, gains in terms of insurance, and costs in terms of disin-
centive, are equated. The right-hand side can be rewritten in terms of the elasticity of
unemployment with respect to benefits εU/ρ′:

βρ′û′(ρ′)

U0(1− U0)
=
βεU/ρ′

1− U0

2.6 Closing the model

The previous optimality condition is based on the function û(ρ′), which itself derives from
the behavior of the household. To close the model, we further characterize this function.
We differentiate the optimality condition (1), valid for a given ρ′, with respect to ρ′:

g′′(π1)
dπ1

dρ′
= β

[

λ

(
∂Ve

∂ρ′
(ρ′, û(ρ′))−

∂Vu

∂ρ′
(ρ′, û(ρ′))

)

+(1− λ)

(
∂Ve

∂ρ′
(ρ, û(ρ′))−

∂Vu

∂ρ′
(ρ, û(ρ′))

)] (4)

The expression of the disincentive effect, û′(ρ′), is provided in the following proposition:

Proposition 2.2. The impact on unemployment of a marginal deviation in the replace-
ment rate (the disincentive effect), û′(ρ′), is:

û′(ρ′) =
βλw

(

u′(ρ′w) + û(ρ′)
1−û(ρ′)

u′(w(1− τ(ρ′, û(ρ′))))
)

g′′(1− û(ρ′))− βρ′w
(1−û(ρ′))2

u′(w(1− τ(ρ′, û(ρ′))))
(5)

with g′′(1− û(ρ′))− βρ′w
(1−û(ρ′))2

u′(w(1− τ(ρ′, û(ρ′)))) > 0 for ρ′ = ρ < ρmax, ρmax being the

highest replacement rate compatible with an unemployment rate û(ρ′) < 100%.
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Proof. The proof consists of two different parts. The first part derives the above-mentioned
expression and is detailed in Appendix B.2. The second part proves that there exists a
higher bound for the replacement rate ρ below which agents exert a positive search effort
(otherwise, nobody would search and no production would take place in this economy).
It is detailed in Appendix A, as one of the properties of the stationary model.

The impact of the persistence of the deviation in the replacement rate, λ, is unam-
biguous: û′(ρ′) is higher, the higher is λ. In other words, a given marginal deviation
in ρ′ will have a stronger impact on the future unemployment rate, when the deviation
is expected to last longer. Indeed, this marginal deviation will affect the search effort
insofar as it reduces the gain in utility from being hired. Therefore, the marginal increase
in ρ′ will have a greater impact on the marginal reduction in the gain from being hired,
when the deviation is more persistent. This mechanism, as can be seen, materializes as
a proportionate effect of λ on û′(ρ′).

Finally, the Baily-Chetty condition can be rewritten as follows, after imposing U0 =
û(ρ′) at the equilibrium:

u′(ρ′w)− u′ (w(1− τ(ρ′, U0)))

u′ (w(1− τ(ρ′, U0)))
=

ρ′β2λw
(

u′(ρ′w)
U0(1−U0)

+ u′(w(1−τ(ρ′,U0)))
(1−U0)2

)

g′′(1− U0)−
βρ′w

(1−U0)2
u′(w(1− τ(ρ′, U0)))

(6)

Each of the two parts of this relation depends on both the replacement rate ρ′ and
the initial unemployment rate U0. At the equilibrium, U0 is the only unemployment rate
compatible with a replacement rate of ρ, which is not subject to deviation. To state it
differently, at the date t = −1, all households expect the future replacement rate to be
equal to ρ, and their search effort results in unemployment at date t = 0 being equal
to U0. Thus, U0 is itself a function of ρ 4: U0 = Υ(ρ). As shown in Appendix A, there
exists only one stable equilibrium, for a given replacement rate ρ expected with certainty.
Quite intuitively, the unemployment rate is an increasing function of the replacement rate:
dΥ(ρ)
dρ

> 0. Finally, as we are only interested in finding the equilibrium, we have already
imposed that ρ = ρ′. This implies that the two sides depend only on the replacement
rate ρ′.

The left-hand side is unambiguously decreasing in ρ′ (and trivially continuous): as
ρ′ increases, the marginal utility of an unemployed is reduced, the unemployment U0 =
Υ(ρ) = Υ(ρ′) rises, so the after-tax wage goes down, and the marginal utility of the
employed increases. Also, the left-hand side becomes arbitrarily high, as ρ′ gets closer to
0. Finally, recall that there exists a higher bound on the replacement rate, above which
no production takes place. Figure 1 plots a possible case.

In the general case, the right-hand side is not monotonous. It is therefore not possible
to prove the uniqueness of the equilibrium. We can, however, prove that at least one
stable equilibrium exists, and, that, when a certain condition on the function g(π) is met,
it is unique.

Proposition 2.3. For λ > 0, there exists at least one interior value ρ′ ∈]0; ρmax[ solution
of (6).

4The function Υ(ρ) defines the relation between unemployment benefits and the unemployment rate
in a stationary environment deprived of temporary deviations. In particular, one has: Υ(ρ) = ûρ(ρ).
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Figure 1: Equilibrium characterization: a case study.

Proof. See Appendix B.3.

Proposition 2.4. A sufficient condition for the existence and the uniqueness of the
equilibrium, regardless of the value of λ > 0, is (1− π)g′′′(π) > g′′(π), ∀π, 0 6 π 6 π

Proof. See Appendix B.4.

Proposition 2.5. When the solution to equation (6) is unique, a marginal increase in λ
results in a reduction of the replacement rate.

Proof. At the left of ρ∗, the left-hand side is greater than the right-hand side, and the
opposite applies at the right of ρ∗. An increase in λ leaves the left-hand side unchanged,
while it pushes upward the right-hand side. It follows that the intersection moves toward
lower levels of ρ.

2.7 Interpreting the equilibrium condition

Several mechanisms are simultaneously at work in this setting: a marginal increase in
benefits generates gains in terms of insurance, as well as costs in terms of disincentive
effect on the unemployment rate. In addition, the choice, operated at t = 0, has an
immediate and pure redistributive impact. Redistribution and insurance differ insofar
as the former takes place ex post, reallocating wealth from high to low income agents
without having been anticipated, while the latter takes place ex ante, operating the
same reallocation, but being properly anticipated. Here, an unexpected increase in the
date t = 0 unemployment benefit is redistributive, but it exerts no disincentive: today’s
unemployment rate is predetermined. The disincentive bears on the impact of future
benefits on the future unemployment rate.
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To isolate this channel, we can consider, as a benchmark, the case where the choice
on the replacement rate, undertaken at t = 0, will apply only from date t = 1 on. In
this manner, the pure redistributive impact is offset. From t = 2 on, the shock ceases to
apply with probability λ. We will refer to this version of the model as the no surprise
model. When needed, the full model where the deviation takes place at date t = 0 will
be denoted the baseline.

In the no surprise case, one can show (see Appendix C) that, the optimal choice of
the replacement rate satisfies another version of the Baily-Chetty condition5:

u′(ρ′w)− u′ (w(1− τ(ρ′, U0)))

u′ (w(1− τ(ρ′, U0)))
=

ρ′û′λ=1(ρ
′)

U0(1− U0)
(7)

This optimality condition is independent of λ, although λ affects the expected duration
of the policy shock6. Precisely, one would obtain exactly the same condition, for a
deviation, chosen at date t = 0, and applying with certainty only at date t = 1 (or until
any terminal date tfinal known with certainty). This can be regarded as the optimal
trade-off between insurance and efficiency, absent any redistributive issue. Qualitatively,
and with the help of the previous graphical analysis, the right-hand side of equation (7),
representing the increasing curve, is higher than in the baseline case7, so the equilibrium
corresponds to a lower replacement rate.

Let us now analyze the impact of λ in the baseline case. The equilibrium replacement
rate balances the current redistributive gains with the impact this marginal deviation
will have in the future. The global future impact consists of the discounted sum of the
impacts of a marginal upward deviation of the replacement rate on the expected utility,
at each of the future dates at which it will take place. Conditional on the deviation being
still carried on at date T − 1, the future marginal effect FMEλ

T at date T − 1 writes:

FMEλ
T (ρ

′) =
d

dρ′
[−g(πT ) + β (λ (πTu(w(1− τ(ρ′, û(ρ′)))) + (1− πT )u(ρ

′w))

+ (1− λ) (πTu(w(1− τ(ρ, û(ρ′)))) + (1− πT )u(ρw)))]

= βλ

[

û(ρ′)w(u′(ρ′w)− u′(w(1− τ(ρ′, û(ρ′)))))−
ρ′wû′(ρ′)

λ(1− û(ρ′))
u′(w(1− τ(ρ′, û(ρ′))))

]

= βλû(ρ′)u′(w(1− τ(ρ′, û(ρ′))))w

[

u′(ρ′w)− u′(w(1− τ(ρ′, û(ρ′))))

u′(w(1− τ(ρ′, û(ρ′))))
−

ρ′û′(ρ′)

λû(ρ′)(1− û(ρ′))

]

(8)

Consider the second to last expression, where the channels appear more distinctly.
The first term inside the brackets corresponds to the insurance gains of a marginal in-
crease in the replacement rate at any date -not only the next one-, conditional on being

5It is easy to show that the condition in proposition (2.4) is also a sufficient condition for existence
and uniqueness of the equilibirum in the no surprise case.

6In this setup, once a marginal deviation in ρ′ has been decided at t = 0, it will apply with certainty
in t = 1. Therefore, the ”true” marginal effect of a deviation in ρ′, û′(ρ′), corresponds to equation (5)
with λ = 1.

7Precisely, the right-hand side of (7) is equal to the right-hand side of equation (3) divided by βλ, so
it is clearly larger.
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implemented. In this stylized setup where employed and unemployed face the same em-
ployment prospects, the insurance gains exactly correspond to the impact of a marginal
increase in ρ′ on the utilitarian criterion. The disincentive costs correspond to the sec-
ond term inside the brackets. The benefit increase raises the unemployment rate, which
translates into a tax increase paid exclusively by employed agents. We can also notice
that:

FMEλ
T (ρ

′) = λFMET (ρ
′)

where FMET (ρ
′) is the marginal effect of an upward deviation of the replacement rate

evaluated at date T − 1, when this deviation will be for sure (λ = 1) maintained at date
T . These marginal effects are all equal: FMET (ρ

′) = FMET ′(ρ′) = FME(ρ′), T ′ 6= T .
The global future marginal effect, seen from date t = 0, is simply

∞∑

t=1

(βλ)t−1FMEλ
T (ρ

′) =

∞∑

t=1

(βλ)t−1λFME(ρ′) =
λ

1− βλ
FME(ρ′)

In the baseline model, a benefit increase also gives rise to pure redistributive gains RG0(ρ
′)

at date t = 0, which write8:

RG0(ρ
′) = û(ρ′)w(u′(ρ′w)− u′(w(1− τ(ρ′, û(ρ′)))))

At the optimal public choice, the sum of all marginal effects is equal to zero:

RG0(ρ
′) +

λ

1− βλ
FME(ρ′) = 0

As instantaneous redistributive gains always occur (RG0(ρ
′) > 0), the public authority

will decide to take advantage of them, up to the point where the deviation generates
future marginal costs exactly balancing the instantaneous marginal gains. Formally, in
expression (8), û(ρ′) = U0, and the bracketed term is negative (since condition (3) is
verified), which implies that FME(ρ′) < 0.

The expected duration of the public choice affects the equilibrium in the baseline case,
because at the optimal public choice, the marginal effect at any future date is negative
(FME(ρ′) < 0), so the total marginal effect will depend on how long these costs will
be suffered. If the public choice is expected to last longer, the total future costs of
any replacement rate increase will be larger, so the public authority will opt for a lower
replacement rate. In the end, this is driven by the fact that the pure redistributive gains
occur for exactly one period, while the future costs will take place for a variable length
of time.

At the limit, when λ = 0, a pure redistribution is operated at t = 0, with no impact
whatsoever on the search effort of agents, as, from t = 1 on, the replacement rate is not
affected by this deviation. From condition (3), noting that û′(ρ′) = 0 in this case, it is
clear that the after-tax income will be perfectly equated between the employed and the

8One can notice that formally, the insurance effect and the redistributive effect are identical. As
already mentionned, what distinguishes them, is only the fact that insurance takes place ex ante, while
redistribution, operated as a surprise, takes place ex post at date t = 0, without have been anticipated
at the previous date.
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unemployed. This, in turn, implies that agents have no incentive to search, so that in
this economy, all agents remain unemployed.

In the no surprise case, in the absence of the pure initial redistribution, only the trade-
off between insurance and disincentive effects takes place. Formally, the total effect of a
marginal replacement rate increase is λ

1−βλ
FME(ρ′). The optimality condition imposes:

λ

1− βλ
FME(ρ′) = 0 ⇔ FME(ρ′) = 0

This optimality condition is the same, whether it is imposed over the whole expected
time span, or for a single model period.

Figure 2 provides a numerical illustration of the impact of λ on the equilibrium re-
placement rate in the baseline case where the deviation occurs at date t = 0. We adopt
the following specifications:

u(c) =
C1−γ

1− γ
, g(π) = A

(
1

ξ
ln

(
π

π − π

))ψ

with γ = 2. This specification can be better understood by introducing an intermedi-
ary variable: the search effort s. It indeed derives from a disutility of effort g(s) = Asψ

and an unemployment exit rate π(s) = π(1 − e−ξs). We impose A = 0.01, ψ = 3.0, ξ =
1.5, π = 0.97, β = 0.98. The figure below plots the curves for the left hand-side and the
right-hand side, for various values for λ. In this case, the right-hand side is monotonously
increasing, and the equilibrium is unique. The longer the initial deviation is on average
(that is, the higher is λ), the lower the equilibrium replacement rate is. In particular, with
λ arbitrarily small, the equilibrium approaches the highest replacement rate compatible
with some agents being employed, ρmax.
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Figure 2: Impact of λ on the equilibrium replacement rate: a numerical illustration.

2.8 Welfare analysis

We here explore the welfare implications of the equilibrium. Two economies identical in
every respect, apart from their values of λ, will be characterized by different equilibrium
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replacement rates, unemployment rates, and levels of welfare. To rank these equilibria in
terms of welfare, we simply compute the utilitarian criterion at each equilibrium. Let us
define Wstat(ρ) as the welfare in the absence of public choice, when ρ is indefinitely held
constant:

Wstat(ρ) = Υ(ρ)Vu(ρ, τ(ρ)) + (1−Υ(ρ)) Ve(ρ, τ(ρ))− g(π(ρ))

where Υ(ρ) is the unemployment rate when ρ remains constant. As there is no unem-
ployment persistence in the baseline economy, we have:

Υ(ρ) = ûλ=1(ρ)

Indeed, in the baseline case, next period’s unemployment rate only depends on the agents
expectations regarding next period’s replacement rate. When λ = 1, agents know with
certainty next period’s replacement rate ρ, and their current search effort is identical to
that in the stationary equilibrium where the replacement rate would remain constant. It
is then straightforward to notice that maximizing Wstat(ρ) is equivalent to imposing the
equilibrium condition in the no surprise model, where the public choice applies only from
t = 1 on9.

Let us denote as ρ∗ the replacement rate maximizing Wstat(ρ). When the condition in
proposition 2.4 is met, the no surprise case equilibrium exists and is unique. Moreover,
there is a single value of ρ solution of equation (7) and the second order condition is
verified, which is equivalent to the function Wstat(ρ) having a unique local and global
maximum. In the baseline case, we have shown that the equilibrium replacement rate
will be higher than in the no surprise case for all λ > 0, and that it is decreasing with
λ. Consequently, the shorter is the expected duration of the deviation, the smaller is the
welfare in the baseline case. Even if the deviation is expected to last forever, the baseline
equilibrium will yield a welfare lower than that corresponding to ρ∗, as long as β < 1.

3 Time consistent choice of unemployment insurance

In this section, we build a model which is calibrated, and numerically simulated, in order
to take explicitly the time-consistency dimension into account. The previous section
has underlined a channel through which the frequency of the public choice affects the
equilibrium outcome. Analytical results were obtained under fairly usual assumptions,
but this approach, for tractability purposes (i) was deprived of any form of unemployment
persistence, (ii) lacked the mechanisms which could explain how the initial equilibrium
is reached and (iii) was deprived of repeated choices. The model developped here, while
remaining as close as possible to the analytical one, deals with these three issues, thus
giving rise to an additional channel through which the frequency of the public choice
affects the equilibrium.

9In the no surprise case, the public choice leaves the t = 0 instantaneous utilities unchanged. If we
assume that λ = 1, -but in sub-section 2.7, we have proved that the equilibrium replacement rate in the
no surprise model is unique and independent from λ- maximizing the utilitarian criterion at t = 0 in the
no surprise case is equivalent to maximizing β ×Wstat(ρ).
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3.1 The model

The economy consists of a continuum of households, who are either employed, or unem-
ployed. Households preferences are represented by a time-separable additive expected
utility, which writes:

E0

(
∞∑

t=0

u(ct)− ζ(st)

)

where u(ct) is the instantaneous utility at date t, st is the search effort at date t and ζ(st)
is the utility cost of search. Only agents currently unemployed provide the search effort,
which affects the probability of being hired at the beginning of the following period,
π(st). Employed agents face an exogenous job destruction rate δ at the beginning of each
period.

When employed, agents earn the after-tax wage w(1 − τt) where τt is the time t
tax rate and w is the exogenous wage. When unemployed, agents receive net benefits
ρtw(1 − τt). This definition, which contrasts with that of the previous section, makes
the interpretation of the replacement rate easier, and it avoids the definition of an upper
bound ρmax on the replacement rate. Savings are precluded, and agents consume their
entire income at each date.

The budget of the public insurance agency is balanced at every date. The tax rate
solves:

ρtwUt = τt (w(1− Ut) + ρtwUt) ⇔ τt =
ρtUt

1− Ut(1− ρt)

We are here constructing a recursive equilibrium such that the choice on the replace-
ment rate, repeatedly operated by the insurance agency, satisfies the principle of time
consistency. When currently choosing the replacement rate, the insurance agency knows
that, in the future, choices shall be decided again, and that it cannot commit to future
choices. Rather, it will take future choices, conditional on the future state of the economy,
as given, and act accordingly.

In order to handle time-consistency, the insurance agency and all agents need to
know the choice rule, Φ(U), which associates, to each possible state of the economy
(exhaustively described here by the unemployment rate), the chosen replacement rate,
and the law of motion of the economy, represented by the function Γ(U, ρ′). The structure
of the policy choice is the following:

• at each date t, there is a probability 1 − λ that a new choice shall be currently
decided upon. When decided, the next choice applies to all agents, not only the
newly unemployed,

• a new choice, operated at date t, applies from date t+ Ta on.

Our baseline case corresponds to Ta = 0: the replacement rate shock, whenever chosen,
applies immediately. However, to neutralize the pure redistributive effect described in
the previous section, we also consider the case for Ta = 1: in this case, a policy shock
decided at the beginning of date t, applies from t+1 on. Given the time structure of the
policy choice in the baseline case, the agent’s program writes:
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V (e, Ut, ρ) = u(w (1− τ(U, ρ))) + β [(1− δ) (λV (e, U ′, ρ)

+ (1− λ) V (e, U ′,Φ(U ′))) + δ (λV (u, U ′, ρ)

+ (1− λ)V (u, U ′,Φ(U ′)))]

s.t.

U ′ = Γ (U, ρ)

V (u, U, ρ) = max
s

u(ρtw (1− τ(U, ρ)))− ζ(s)

+β [π(s) (λV (e, U ′, ρ) + (1− λ)V (e, U ′,Φ(U ′)))

+(1− π(s)) (λ V (u, U ′, ρ) + (1− λ)V (u, U ′,Φ(U ′)))]

s.t.

U ′ = Γ (U, ρ)

(9)

With probability 1−λ at each period, the insurance agency chooses a new replacement
rate, until the next choice. It maximizes the utilitarian criterion evaluated at date t:

Φ(U) = argmax
ρ̃

{UV (u, U, ρ̃) + (1− U)V (e, U, ρ̃)}

The equilibrium consists of the choice rule Φ (U) and the law of motion for unemploy-
ment Γ (U, ρ′) such that:

1. Given the law of motion for unemployment and the choice rule , V (ε, U, ρ) , ε = e, u

is the value function solution to program (9), and s (u, U, ρ) is the effort rule,

2. Given the effort rule, and for any state of the economy (U), and for any current
replacement rate ρ, next period’s unemployment rate, U ′, implied by the effort rule,
is consistent with the expected law of motion Γ (U, ρ),

3. Given the above value function, the maximization of the utilitarian criterion at each
date is consistent with the expected policy rule Φ (U):

∀U,Φ (U) = argmax
ρ̃

(1− U) V (e, U, ρ̃) + UV (u, U, ρ̃) ,

Note that in the case of the policy announcement (Ta = 1), the model structure some-
what differs from the above presentation (see Appendix D for a complete presentation of
this version of the model).

3.2 Calibration

As this model is numerically computed10 (see Appendix E for a presentation of the nu-
merical algorithm), all functions need be specified, and all parameters need be assigned

10Numerically, we resort to the standard method of grid discretization. We define the interval consisting
of all possible values for the unemployment rate [Umin;Umax] and the interval for the replacement rate
[ρmin; ρmax] where Umin, Umax, ρmin, ρmax are chosen so as to ensure that the equilibrium values for the
unemployment rate and the replacement rate belong to these two intervals.
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values. The two terms of the instantaneous utility function are assumed to be:

u(c) =
C1−γ

1− γ
, ζ(s) = Asψ

where γ is the relative risk aversion. The exit rate function writes (a common formula-
tion,as, for example, in Wang and Williamson (1996)):

π(s) = 1− e−ξs

We use a model periodicity of three weeks to capture the average unemployment du-
ration on the labor market11. The model is calibrated on the US segment of low-qualified
workers. We focus on this segment for two main reasons. First, low-qualified workers earn
rather frequently the minimum wage, which is consistent with our assumption regarding
the exogeneity of the gross wage. Secondly, this segment of the population has a strong
need for unemployment benefit as a means to smooth consumption, as opposed to other
households who save on other grounds -mainly life cycle motives- and who could smooth
consumption more easily on their own. Precisely, we have to set values for γ, β, ξ, ψ, δ
and w. Without any loss of generality, the wage rate w can be normalized to 1. The
relative risk aversion γ is set to a value of 212.

The value of the discount factor β is somewhat more problematic in this simple setting.
Indeed, among the remaining parameters to be calibrated, ξ, ψ and δ, directly affecting
labor market flows, will be calibrated in order to match some key labor market statistics
(see below). Only β remains. As its interactions with labor market flows are far from
obvious, it would seem awkward to try to calibrate it, by imposing another labor market
statistic to match. From our point of view, this parameter would be best calibrated,
jointly with the interest rate, in a model where agents can save, and in order to match fi-
nancial assets statistics. As, here, savings are precluded, we are not given this possibility.
Consequently, we have decided to rely on a different version of this model, allowing for
savings, and developed in a companion paper (Kankanamge and Weitzenblum (2014)).
In this other model with savings, the interest rate is set according to the portfolio compo-
sition of low-qualified workers (based on the Survey of Consumer Finances (SCF), 2007),
and the discount factor is calibrated in order to match the average asset holdings (also
obtained from the SCF 2007) of low-qualified workers. We find β = 0.9945. For lack of
any other solution, and since the two models are structurally identical13, we have decided
to impose here also the value β = 0.9945.

ξ, δ and ψ directly affect the search intensity of the unemployed agents. Their cal-
ibration is therefore based on what we regard as the key quantitative properties of the
U.S. labor market for low-qualified workers. Precisely, we intend to reproduce (i) the
unemployment rate for this type of workers, (ii) the average unemployment duration and
(iii) the elasticity of the average unemployment duration with respect to the replacement

11The model period needs be considerably smaller thant the average duration of unemployment, which,
in the case of the US, is close to one quarter.

12This falls in the range of values usually admitted for this parameter, due to the wide range of
estimates in the literature.

13Apart from the saving behavior which is absent here and present in the companion paper. The values
of the different parameters are of course different, but the specifications and the imposed labor market
statistics are all identical.
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Parameter Value Description

w 1 Wage (normalization)
β 0.9945 Discount factor
γ 2 Relative risk aversion
δ 0.0133 Job destruction rate
ξ 0.2149 Exit rate parameter
ψ 1.9391 Curvature of effort function

Table 1: Benchmark calibration values

rate. We use the Current Population Survey (CPS)14 to compute values for the first two
elements. We retain CPS data from mid-2006 to mid-2007. We find an unemployment
rate of about 7% for this fringe of the population. The unemployment duration is about
17 weeks in the data. Given the unemployment rate and the unemployment duration, it
is straightforward to deduce the average employment duration, which in turn implies a
job destruction rate δ of 0.0133. Finally, the estimation of the elasticity of unemployment
duration with respect to the replacement rate does not lead to a consensus. A positive
value below 1 is to be expected (see Layard et al. (1991)). For low-qualified workers in
the U.S., we assume that the elasticity should be on the lower side of the plausible values
(calculated for various countries) and set to a target value of 0.4. We find that with
ψ = 1.9391 and ξ = 0.2149, we match the above mentioned calibration targets.

This calibration has been implemented in a simpler model deprived of the public
choice: an exogenous replacement rate is assumed to be held indefinitely, and the economy
has converged toward its long-run equilibrium. The baseline economy corresponds to a
replacement rate equal to 40%. The elasticity of unemployment duration is computed
by simulating the counterfactual experiment of marginally increasing the replacement
rate, which yields its associated unemployment duration, and comparing it to its baseline
counterpart.

3.3 Simulation results

3.3.1 Equilibrium replacement rates

Table 2 presents, for various expected choice periodicities (the periodicity being the in-
verse of 1 − λ), the associated equilibrium replacement rate and unemployment rate.
The lines denoted as Ta = 1 correspond to the policy announcement: with an identical
calibration, we simulate the model, following the equilibrium definition of Appendix D.

Choice periodicity (years) λ = 0 0.25 0.5 1 4 10

|Replacement rate (in %) – 82.5 78.1 75.2 72.5 71.9
Ta = 0 | Unempl. rate (in %) – 10.8 10.2 9.8 9.5 9.4

| Replacement rate (in %) 88.4 80.2 76.9 74.6 72.3 71.8
Ta = 1 | Unempl. rate (in %) 12.1 10.5 10.0 9.7 9.5 9.4

Table 2: Time-consistent unemployment benefits

14Data were taken from http://www.nber.org/cps/
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The equilibrium replacement rate, in the case of the policy announcement (Ta = 1),
depends on the frequency of the public choice, and is decreasing with the choice period-
icity. The analytical model developed in the previous section has shown that the gains
from immediate redistribution make the equilibrium replacement rate lower, the longer
the periodicity. As the pure redistributive channel is completely offset here (Ta = 1),
this result proves that there exists another mechanism explaining why the equilibrium
replacement rate depends on the periodicity of the public choice. Precisely, the ana-
lytical model, for the purpose of simplicity, was deprived of any form of unemployment
persistence: tomorrow’s unemployment rate depended on the expected replacement rate,
and was independent from today’s unemployment. This property justified why the redis-
tributive channel was the only mechanism operative in the model. When unemployment
persistence is accounted for, another channel, which will be thoroughly analyzed and com-
mented below, appears. Table 2 shows that in the baseline case, the two effects, which
operate in the same direction, tend to make the replacement rate even more periodicity
dependent.

For a choice deterministically repeated every period (λ = 0), the replacement rate
is not defined in the baseline case, while it remains well below 100% (ρ = 88.4%) when
Ta = 1. Indeed, in the baseline case, as the analytical model has shown, the temptation
to benefit from the current redistribution is too strong, and no replacement rate strictly
below 100% could be an equilibrium. This is no more the case, when the redistributive
channel is neutralized.

Quantitatively, the periodicity has a considerable impact on the level of the replace-
ment rate: that it may vary of some 10− 15 percentage points, on pure time-consistency
issues, is indeed highly significant. It needs however be noted that the replacement rate
depends on the periodicity of the public choice mostly for very low periodicities (3 months,
6 months and one year). Such low periodicities may not seem very realistic, when it comes
to thinking of re-designing -and, therefore, bringing recurrently into the political debate-
a structural policy such as unemployment insurance. If one were to regard the periodic-
ity of nation-wide elections as the natural one for the choice of unemployment insurance,
then 4 years could be regarded as a central value. Bringing down the periodicity to 1
year would consequently generate a replacement rate increase of around two percentage
points. Finally, we also note that the equilibrium replacement rate, for all periodicities,
remains well above the one observed in the U.S. economy. In this stylized setup where
agents do not have access to financial assets, and each household is assumed to earn a
single wage, the impact of labor income risk and the opportunity to insure agents better
are magnified.

3.3.2 Model dynamics

To improve our understanding of the dynamic forces at work here, we provide the coef-
ficients of a linear approximation of the two core functions (the law of motion of unem-
ployment, and the public choice rule) around the equilibrium.15 We define the following

15Analyzing the impact of the public choice periodicity on the shape of the functions is considerably
easier with this quantitative characterization, than with graphic representations.
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The table 3 below presents these 3 coefficients for various public choice periodicities.

Choice periodicity (years) 0.25 1 4

αU
1 0.8748 0.8628 0.8588
αU
2 0.0062 0.0112 0.0136

α
ρ
1 -0.1048 -0.0470 -0.0158

Table 3: Law of motion and choice rule for various choice periodicities

Let us first analyze the values for a given periodicity, say 4 years. The dynamics of the
unemployment rate are characterized by considerable persistence, as could be expected
for such a stock variable: αU1 is close to 1. The coefficient αU2 is positive: an increase
in the replacement rate, decided at the current period, reduces the incentive to search
for a job. Regarding the choice rule, the coefficient αρ1 is negative. The impact of the
current unemployment level on the public choice depends on (i) the insurance and re-
distributive effects and (ii) how the disincentive effect is affected by the unemployment
rate. For higher unemployment levels, the insurance/redistributive effect of a marginal
increase in benefits should mechanically be higher. Considering only the pure redistri-
bution operated at the current period, it is rather intuitive to notice that the utilitarian
gains from a marginal increase in the replacement rate will be higher, if the proportion of
unemployed benefiting from it is larger. The disincentive effect is quantitatively assessed
in the simulations as follows: the partial derivative αU2 can be numerically computed
for various unemployment rates, and not only at the equilibrium. It appears that αU2 is
higher when the unemployment rate is higher17: therefore, the disincentive effect is larger,
for higher unemployment rates. These two channels tend to have opposite effects on the
opportunity, in the utilitarian sense, to raise or lower benefits. Here, the impact of unem-
ployment on the disincentive effect dominates, but as we will see below, the magnitude
of the impact of αρ1 is very small.

Turning to the impact of the periodicity on the various coefficients, the longer the
periodicity, the higher the impact of the replacement rate on the future unemployment
rate (the coefficient αU2 ). This is an illustration of how the disincentive effect at a given
date is all the higher, as the expected duration of the benefit increase is longer. It is a
pure dynamic effect, quantifying the unemployment rate change between two consecutive
dates. If the periodicity of the public choice increases, not only will a replacement rate

16The functions being computed on the grid, we simply choose two gridpoints around the equilibrium.
For the law of motion, we choose two gridpoints on either side of the equlibrium with respect to one
dimension -U or ρ-, keeping the other dimension constant, and draw the line. For the public choice rule,
we simply choose two gridpoints around the equilibrium unemployment rate, and draw the line.

17The values are not reproduced in this article.
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increase last on average longer, but the unemployment rate will react more, from one
time period to the next. Although the two models are somewhat different, this is the
quantitative counterpart of the û′(ρ′) function of the model developed in section 2. In both
cases, as the periodicity increases, so does the marginal impact of a given replacement rate
increase on the unemployment rate change. The effect of the periodicity on the coefficient
α
ρ
1 is less straightforward. It implies that, for a given unemployment rate increase, the

chosen replacement rate will be lower, as the periodicity gets shorter.
To provide another illustration of the dynamics of the public choice, figure 3 plots 4

time paths, corresponding to the dynamics of the replacement rate, in case a marginal
increase of 1.5 percentage points is exogenously operated at date t = 0, starting from
the time-consistent equilibrium, and for a public choice periodicity of 6 months. By
construction, the time-consistent equilibrium is such that, once it has been reached, no
further deviation will be regarded as beneficial, in the utilitarian sense. However, for
such an opinion to be grounded, the public insurance agency -and all agents in this
economy- need to assess the impact of a marginal deviation on the dynamics of this
economy, to make sure that such a deviation is not worth it. The dynamics simulated
here precisely consists of the path of the economy, which is initially located at the time-
consistent equilibrium, which is exogenously hit by a small shock on the replacement
rate, and which converges back to its equilibrium. Figure 3 presents some time paths,
among the great diversity of which agents would expect, in case an upward deviation of
the replacement rate was implemented.
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Figure 3: Dynamics of the replacement rate

The initial level of the replacement rate consists of the equilibrium value (78.1%, for a
6 months periodicity) to which an exogenous 1.5 points increase is added. As the public
choice occurs at random, these 4 different paths correspond to different realizations of the
random variable representing the occurrence of a new public choice at each date. Once a
public choice first occurs, the new replacement rate will be reset at a value very close to
its initial level. This means that the choice on ρ does not depend much on what makes
the state of the economy vary with time, that is, on the unemployment rate.

Although this is not perceptible on the graph, the first endogenous public choice
slightly overshoots the final equilibrium replacement rate. This reflects the fact that the
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public choice rule is a decreasing function of the unemployment rate (αρ1 < 0). Following
the initial exogenous replacement rate increase, the unemployment rate rises. As pre-
viously mentioned, when the unemployment rate is higher, so is the disincentive effect.
Consequently, when the first endogenous public choice occurs, the public authority is
faced with a higher disincentive effect, so it decides to be a little less generous. Quanti-
tatively, this channel is very weak -the overshooting is not visible on the graph-, and in
particular, it has no repercussion on the stability of the equilibrium.

The fact that the endogenous choice of the public insurance agency is extremely close
to its equilibrium value suggests that the equilibrium definition of the analytical model, in
sub-section 2.4, however naive, should lead to quantitative results, very close to a repeated
public choice approach18. Indeed, agents were naive in the theoretical approach, because
they expected the replacement rate to be forever reset at a constant value, once the
initial deviation would no longer apply. Here, agents expect the public insurance agency
future choices correctly, but quantitatively, these choices hardly differ from the initial
replacement rate.

3.3.3 Temptation to deviate and duration of the deviation: another channel

We here bring to light the channel which explains why the equilibrium replacement rate
in the baseline model is periodicity dependent. As the structure of the baseline model
is rather complex, it is fruitful to consider simpler dynamics, deprived of the recursive
structure necessary to handle time consistency. The effects on unemployment and welfare
of various deviations differing in their duration, can then be more easily analyzed. Pre-
cisely, we shall consider here deterministic temporary deviations in the replacement rate,
perfectly foreseen by all agents. The transitional dynamics are characterized as follows:

• the initial state of the economy consists of the unique unemployment rate U0 con-
sistent with the replacement rate ρ being indefinitely imposed in the past,

• at date t = 0, a deviation of the replacement rate of magnitude ∆ρ, effective from
date t = 1 on (but known from the beginning of date t = 0), and lasting S periods,
is implemented. This deviation is perfectly anticipated by all agents,

• from date t = S + 1 on, the replacement rate reverts back to ρ, its initial value.

The deviation, decided upon at date t = 0, starts from date t = 1 on. Therefore, the
redistributive channel, underlined in the previous section, is completely offset. In this
time-varying environment, the recursive formulation of the agents’ program is:

V (e, t) = u(w (1− τt))− ζ(0) + β [(1− δ)V (e, t+ 1) + δV (u, t+ 1)]

V (u, t) = max
st

u(ρtw (1− τt))− ζ(st) + β [π(st)V (e, t+ 1) + (1− π(st))V (u, t+ 1)]

(10)

The dynamics of the economy then consists of
(
(ρt)t>0 , (τt)t>0 , (st)t>0 , (Ut)t>0

)
such that:

18This does not mean that the quantitative results in this section should be close to the numerical
illustration of subsection 2.6, because the model structures are not identical.
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• given the paths (ρt)t>0 and (τt)t>0, (st)t>0 is the optimal search effort of the program
(10),

• the path for unemployment, (Ut)t>0 is the only one compatible with U0 and search
effort (st)t>0. That is:

∀t > 0, Ut+1 = δ(1− Ut) + (1− π(st))Ut

• given (ρt)t>0 , (τt)t>0 and (Ut)t>0, the budget of the insurance agency is balanced at
every date:

∀t > 0, τt =
ρtUt

1− Ut(1− ρt)

To highlight in what way the gains and costs arising from a marginal increase of the
replacement rate depend on the duration of the deviation, we proceed as follows. First,
we search for the initial replacement rate ρ such that a deviation of magnitude ∆ρ = 2
percentage points, effective for a single model period (date t = 1), leaves unchanged the
utilitarian criterion evaluated at t = 0. In other words, ρ is the numerical counterpart
of the equilibrium replacement rate defined in sub-section 2.4, and for a deterministic
deviation lasting one period19. We then simulate the transition, starting with the same
initial unemployment rate U0, for various durations S. In particular, we focus on the
differentiate impact of deviations lasting 1 and 2 periods.
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Figure 4: Unemployment rate dynamics

From figure 4, it is clear that the cumulated impact on the unemployment rate of a
deviation lasting 2 periods is considerably higher than twice the impact of a deviation
lasting one period. Indeed, the initial unemployment rate increase is almost twice as high

19Indeed, in this setting, the public choice is decided only at t = 0, never repeated thereafter, and
the initial state of the economy is such that the deviation is not beneficial according to the utiliarian
criterion.
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Figure 5: Tax rate dynamics

when S = 2, and it keeps increasing at date t = 2, whereas it has already started to
decrease from date t = 1, when the deviation ends at t = 1.

Let us focus on the case where S = 2. The increase in the replacement rate lowers
the intertemporal utility gain from finding a job, V (e, t+ 1)− V (u, t+ 1). For marginal
variations, the unemployment increase is proportional to the search effort reduction,
which itself is proportional to the decrease in this utility gain. Ignoring for the purpose
of the argument the impact of the unemployment increase on the tax rate and on the
after-tax income, the difference V (e, 1)−V (u, 1) diminishes, both because the difference in
instantaneous utility u(w(1− τ1)− u(ρ1w(1− τ1)) falls, and because the future expected
difference u(w(1 − τ2) − u(ρ2w(1 − τ2)) falls too. This latter term is discounted by
β(1− δ − π(s2))

20.
Consequently, the search effort reduction at date t = 0 is driven by the replacement

rate increases at both dates. At date t = 1, only the replacement rate increase effective at
the next date affects the search effort. This justifies why the unemployment rate increase
from t = 0 to t = 1 is roughly twice as large as that from t = 1 to t = 2.

As seen from date t = 0, the increase in ρ at t = 2 doubly affects the unemployment
rate (by lowering the search effort at t = 0 and t = 1), while the t = 1 increase affects
it only once, through its impact on date t = 0 search effort. Figure 4 shows that the
unemployment rate increase at date t = 2 (and at all subsequent dates) is around three
times larger when the shock on the replacement rate lasts two periods, instead of one.
Therefore, the marginal disincentive costs increase more than proportionately with the
duration.
As for the marginal insurance gains, holding the unemployment rate constant, and ig-
noring the discount rate, they are proportional to the duration of the policy shock. As
long as the shock still applies, these gains arise from the gap in marginal utilities between
employed and unemployed agents, the gap remaining constant.
Therefore, the marginal disincentive costs increase more than proportionately with the

20to account for the fact that, as seen from t = 1, the gain is all the smaller, as the agent may find a
job at t = 2 (with probability π(s2))
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duration, while the marginal insurance gains are approximately proportional to the dura-
tion. As the duration increases, marginal costs increase faster than gains. In the example
presented in the figures 4 and 5, the initial state corresponds to a maximal utilitarian
criterion, for a deviation lasting 1 period. This means that the marginal gains and costs
exactly offset each other. If the deviation lasted 2 periods, the marginal costs would
become larger than the marginal gains. The net impact on the utilitarian criterion would
be negative, and, on the opposite, a replacement rate reduction would be beneficial. The
current replacement rate would then be too high, if the deviation were to last 2 periods,
instead of one.

Figure 5, although less striking at first sight, consists in another illustration of the
mechanism, through its impact on the tax rate. When the deviation lasts for 2 periods,
the tax rate is already higher at date 1. It is not very clear from the graph, because
the largest part of the tax rate increase is due to the increase in the replacement rate,
the magnitude of which is identical in both cases. The unemployment rate increase,
which, within one period, remains very modest, only marginally contributes to the tax
rate increase. At date t = 2, the tax keeps on increasing. From date t = 2 on, the tax
rate is distinctly higher than for a deviation lasting one period.

Therefore, the forward-looking nature of workers behavior explains why the impact
of an announced replacement rate increase is greater, when the increase will take place
in a more distant future. This, in turn, justifies why the periodicity of the public choice
in the replacement rate negatively affects the equilibrium replacement rate, even in the
absence of the redistributive channel described in section 2.

3.4 Time consistent choice of unemployment benefits time pro-

file

Apart from the redistributive channel, we have shown that the generosity of the unem-
ployment insurance depends on the duration of the public choice because the disincentive
impact of benefits is all the stronger, as it is expected to apply later. One could argue
that this mechanism does not pertain directly and only to the duration of the public
choice, but also to the time profile of unemployment benefits. In other words, for an
agent newly unemployed at date t, what makes a marginal increase in benefits at date
t + 2 more costly in terms of disincentive, than a marginal increase at date t + 1, is not
only the fact that the deviation lasts for 2 time periods, but also that it applies for agents
who have been unemployed for 2 periods. This suggests that the previous result -the fact
that the equilibrium replacement rate is lower, when the public choice is less frequent-
would deserve to be reformulated in terms of equilibrium time profile. It could be that
the frequency of the public choice affects the degressivity of the time profile, rather than
the average level of benefits.

To answer this question in quantitative terms, we let the insurance agency impose
replacement rates which depend on the duration of the current unemployment spell. We
therefore distinguish short-term unemployed agents from long-term ones. We assume
that agents always start a new unemployment spell as short-term unemployed. Then, at
the beginning of each new period, they become long-term unemployed with probability
η. This implies that the length of time spent in the short-term state is stochastic, and
its mean, conditional on not finding a job, is equal to 1

η
. We therefore need to take
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into account two levels of replacement rate (ρs and ρl respectively denoting the short-
term and the long term replacement rates) and two pools of unemployed: the short
term unemployment Us and the long-term one, Ul. Apart from this distinction, the
model structure (preferences, exit rate function) remains unchanged. The budget of the
insurance system is balanced at every date t, so that:

ρs,twUs,t + ρl,twUl,t = τt (w(1− Us,t − Ul,t) + ρs,twUs,t + ρl,twUl,t)

⇔ τt =
ρs,tUs,t + ρl,tUl,t

1− Us,t(1− ρs,t)− Ul,t(1− ρl,t)

The agent’s program is (ignoring the time subscript t):

V (e, Us, Ul, ρs, ρl) = u(w (1− τ(Us, Ul, ρs, ρl))) + β [

(1− δ)
(
λV
(
e, U ′

s, U
′

l , ρs, ρl
)
+ (1− λ) V

(
e, U ′

s, U
′

l ,Φs(U
′

s, U
′

l ),Φl(U
′

s, U
′

l )
))

+δ
(
λV
(
s, U ′

s, U
′

l , ρs, ρl
)
+(1− λ)V

(
s, U ′

s, U
′

l ,Φs(U
′

s, U
′

l ),Φl(U
′

s, U
′

l )
))]

V (s, Us, Ul, ρs, ρl) = max
s

u(ρsw (1− τ(Us, Ul, ρs, ρl))) − ζ(s)

+β
[
(1− η)

(
π(s)

(
λV
(
e, U ′

s, U
′

l , ρs, ρl
)
+ (1− λ)V

(
e, U ′

s, U
′

l ,Φs(U
′

s, U
′

l ),Φl(U
′

s, U
′

l )
))

+(1− π(s))
(
λ V

(
s, U ′

s, U
′

l , ρs, ρl
)
+ (1− λ)V

(
s, U ′

s, U
′

l ,Φs(U
′

s, U
′

l ),Φl(U
′

s, U
′

l )
)))

+η
(
π(s)

(
λV
(
e, U ′

s, U
′

l , ρs, ρl
)
+ (1− λ)V

(
e, U ′

s, U
′

l ,Φs(U
′

s, U
′

l ),Φl(U
′

s, U
′

l )
))

+(1− π(s))
(
λ V

(
l, U ′

s, U
′

l , ρs, ρl
)
+ (1− λ)V

(
l, U ′

s, U
′

l ,Φs(U
′

s, U
′l),Φl(U

′

s, U
′l)
)))]

V (l, Us, Ul, ρs, ρl) = max
s

u(ρlw (1− τ(Us, Ul, ρs, ρl)))− ζ(s)

+β
[
π(s)

(
λV
(
e, U ′

s, U
′

l , ρs, ρl
)
+ (1− λ)V

(
e, U ′

s, U
′

l ,Φs(U
′

s, U
′

l ),Φl(U
′

s, U
′

l )
))

+(1− π(s))
(
λV
(
l, U ′

s, U
′

l , ρs, ρl
)
+ (1− λ)V

(
l, U ′

s, U
′

l ,Φs(U
′

s, U
′

l ),Φl(U
′

s, U
′

l )
))]

s.t.

U ′

s = Γs (Us, Ul, ρs, ρl)

U ′

l = Γl (Us, Ul, ρs, ρl)

(11)

In line with the above models, the public insurance agency operates a new choice
at every period, with probability 1 − λ. It is assumed that the company simultaneously
chooses the two replacement rates in order to maximize the utilitarian criterion, as shown
here:

(Φs(Us, Ul),Φl(Us, Ul)) = argmax
ρ̃s,ρ̃l

{UsV (s, Us, Ul, ρ̃s, ρ̃l) + UlV (l, Us, Ul, ρ̃s, ρ̃l)

+(1− Us − Ul)V (e, Us, Ul, ρ̃s, ρ̃l)}

The equilibrium definition (see appendix F) very closely parallels that of section 3.1.
Simply, the law of motion of the economy (resp. the choice rule) now consists of two
functions, Γs and Γl (resp. Φs and Φl) instead of one in case of a flat replacement rate.

In order to make the different models as comparable as possible, we keep the cal-
ibration parameters of sub-section 3.2. We mainly focus on the impact of the choice
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periodicity on the time profile and the average level of the replacement rate, but it is also
useful to analyze the impact of η, the probability of moving from short term unemployed
to long term unemployed. Of course, this parameter should, in principle, be treated like
the replacement rate, as it is another feature of the unemployment insurance. However,
to avoid facing too large a choice -which would be both technically challenging and dif-
ficult to analyze-, we choose to regard η as a constant parameter. Simulating the public
choice for different ηs can be considered as a robustness test of our model, which requires
an exogenous η.

Table 4 below presents the optimal time-consistent replacement rates for short and
long term unemployed for η = 0.25 (implying an average duration in short-term unem-
ployment of one quarter) and various values for λ.

Choice periodicity (years) 0.25 0.5 1 4

ρs(in %) 91.4 91.5 91.9 94.2
ρl(in %) 79.5 74.4 71.0 70.8
Unempl. rate (in %) 10.4 9.8 9.5 9.4
Average replacement rate 83.6 80.6 78.8 79.6

Table 4: Time-consistent unemployment benefits time profiles

The degressivity is significantly affected by the periodicity of the public choice. As
could be expected, the long term replacement rate falls as the periodicity increases.
This confirms the intuition, which emerged at sub-section 3.3.3, that with a higher λ, the
probability that the current increase in the replacement rate will still apply in a few model
periods is higher, generating a larger impact on the unemployment rate dynamics, and
consequently, bringing down the optimal benefit level. What was not expected is the non
negligible impact of λ on the short term unemployment benefit: it increases as the choice
becomes less frequent, thereby exacerbating the impact of the public choice periodicity on
the degressivity of the time profile. The fact that the degressivity is much smaller, when
choices occur more frequently, is not very surprising. Indeed, the degressivity pattern is
optimal because, as seen from today, an increase in benefits in the near future (say, 4
periods) has a larger disincentive effect than an increase in the immediate future (say,
1 period), provided that the increase is expected to last long enough to be still effective
in the near future. If not, agents simply expect the replacement rate to be chosen again
before reaching this term. In this case, the long term unemployed replacement rate does
not exert such a large disincentive effect, and there is less need for the optimal time profile
to be degressive.

The impact of λ on the average replacement rate is much less pronounced than on
the time profile, as the opposite evolutions of the two replacement rates tend to offset
each other. It does not evolve monotonically with the choice periodicity. The fact that
the choice periodicity affects the degressivity of the benefit time-profile much more than
the average replacement rate echoes the well known result, that the optimal design of
unemployment insurance involves subtle time-profile considerations more than the defi-
nition of a global level of generosity. What is original here is that the magnitude of the
degressivity is significantly affected by time-consistency issues.
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Simulations21 with different values for η show that the impact of the periodicity of
the public choice on the degressivity of the time-profile remains qualitatively identical,
and quantitatively very close to the one presented here.

4 Concluding remarks

In this article, we have brought to light mechanisms, which help understand in what
way the time-horizon characterizing the choice of unemployment insurance affects the
temptation of the social planner to marginally deviate toward higher levels of benefits
and, in turn, the equilibrium replacement rate. Balancing short-run pure redistributive
gains with median run efficiency costs is a possible channel. The forward-looking nature of
the search behavior of unemployed is at the core of another channel. When considering
flat profiles for the replacement rate, a marginal increase of the replacement rate will
trigger efficiency costs and insurance gains, which are not equally affected by the time
horizon of the public choice. Efficiency costs (or, equivalently, disincentive effects) grow
faster than insurance gains with the considered periodicity, so that a social planner with
a longer horizon will be less tempted to increase unemployment benefits, and will end up
with a lower equilibrium replacement rate. When allowing for more flexible time-profiles
for the replacement rate, it appears that the equilibrium time-profile is always degressive,
whatever the periodicity of the choice, but the degressivity is positively affected by the
choice periodicity.
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A The stationary equilibrium model

In this appendix, we sketch the model of an economy similar to that of section 2 where the
replacement rate (denoted as ρ′ here) remains constant and is not subject to temporary
deviations, and we present some properties of its equilibrium. In this case, recalling that
the expression of τ as a function of ρ′ and U is22.

τ(ρ′, U) = τ(ρ′, 1− π) =
ρ′(1− π)

π
=
ρ′

π
− ρ′

the optimality condition on the search effort writes:

g′(π) = β

(

u(w(1−
ρ′

π
+ ρ′))− u(ρ′w)

)

(12)

This expression is defined as long as (i) the tax rate remains below 100% and (ii) the net
income of the unemployed is smaller than the net income of the employed. It is easy to
check that the second requirement is tighter than the first, and can be rewritten as:

π > ρ′

The left-hand side of the optimality condition is an increasing function, with g′(0) = 0.
It is also convex, as g′′′(π) > 0. One can check that the right-hand side is a strictly
concave function of π. The right-hand side is only defined for π > ρ′ and for π = ρ′, it
is equal to zero. Therefore, the two sides either (i) cross twice, (ii) tangentially admit a
common value or (iii) never cross23. Figure 6 represent the most frequent case where the
two curves cross twice.

As ρ′ increases, the right-hand side moves toward the right, and there exists an upper
bound on ρ′ where the two curves tangentially admit a single common point. For higher
ρ′, no equilibrium exists.

Out of the two intersections, only that corresponding to the higher value for π consists
in a stable equilibrium. To understand it more easily, we adopt a different graphical
representation of the optimality condition:

π1 = g′−1

(

β

(

u(w(1−
ρ′

Π1
+ ρ′))− u(ρ′w)

))

⇔ π1 = γ(Π1)

where π1 is the effort of a given agent and Π1 is the effort of all the other agents. It defines
an increasing and concave function of Π1. At the equilibrium, π1 = Π1. Graphically,
either the curve and the π1 = Π1 line cross twice, or they tangentially meet once, or they
do not have any common value. Out of the two intersections, the first one corresponds
to an unstable equilibrium. As soon as the effort Π1 deviates from the equilibrium value,
each individual effort will diverge by a greater amount. On the opposite, the second

22In this model, all time subscripts will be dropped as we are analyzing a stationary equilibrium where
all aggregate variables remain constant throughout the time.

23We know that g′(0) = 0, that g′′(0) < +∞ and from equation (12), we can see that the derivative of
the right-hand side can be made arbitrarily high at π = ρ′, by choosing ρ′ small enough. Therefore, there
is always an equilibrium, provided that the replacement rate is small enough. For a given replacement
rate, it could however be that the two curves do not cross.
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Figure 6: Optimality condition representation in the stationary model: the frequent case

intersection is stable in the sense that if Π1 slightly deviates from its equilibrium value,
all individual efforts will converge back to the equilibrium24. In the case where the curve
tangentially meets the π1 = Π1 line, the equilibrium is not stable, as any downward
deviation will make the sequential process diverge.

At the stable equilibrium, the slope of the curve is strictly smaller than one, which is
equivalent to:

g′′(π) >
βρ′w

π2
u′(w(1−

ρ′

π
+ ρ′))

Note that the the model developed in section 2 endogenizes the replacement rate, but
given the replacement rate, all other properties of the equilibrium developed in this
appendix, in terms of comparative statics, will be verified. Therefore, the above equation
ensures that the denominator in the right-hand side of the expression (3) is strictly
positive.

Also, note that as ρ′ increases, at any given level of effort π,the γ(π) curve is moving
downward, ensuring that the stationary effort π is, lower, that is, the stationary unem-
ployment rate is higher. Finally, as the function γ(π) is trivially continuous wherever it
is defined, the function Υ(ρ′) is continuous.

24This would become clearer if we defined a sequential equilibrium where each individual effort was a
function of the past aggregate effort: πt+1

1 = γ(Πt
1) and if we described its associated dynamics.
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Figure 7: Optimality condition in the stationary model: alternative representation

B Proofs

B.1 Proof of Proposition 2.1

Let us start with the optimality condition (2). We have:

∂Ve(ρ
′, U0)

∂ρ′
= Ve1(ρ

′, U0) = −τ ′1(ρ
′, U0)wu

′(w(1− τ(ρ′, U0))

+βλπ1Ve1(ρ
′, û(ρ′)) + βλπ1û

′(ρ′)Ve2(ρ
′, û(ρ′))

+β(1− λ)π1û
′(ρ′)Ve2(ρ, û(ρ

′)) + βλ(1− π1)Vu1(ρ
′, û(ρ′)).

where the number in the subscript refers to the position of the variable which is derived.
This results follows from ∂Vu(ρ′,U)

∂U
= Vu2(ρ

′, U) = 0 (variations in the unemployment rate
only affect the after tax wage, and not the replacement income (nor does it affect the
search effort). The envelop condition writes:

dVi(ρ
′, U0)

dρ′
=
∂Vi(ρ

′, U0)

∂ρ′
+
∂π1

∂ρ′
∂Vi(ρ

′, U0)

∂π1
︸ ︷︷ ︸

=0

for i = e, u

We also have:

∂Ve(ρ
′, U)

∂U
= Ve2(ρ

′, U) = −wτ ′2(ρ
′, U)u′(w(1− τ(ρ′, U)))

Finally, we have:

Vu1 = wu′(ρ′w) + wτ ′1(ρ
′, û(ρ′))u′(w(1− τ(ρ′, û(ρ′)))) + Ve1(ρ

′, û(ρ′))
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We define Φ(ρ′, û(ρ′)) = wu′(ρ′w) + wτ ′1(ρ
′, û(ρ′))u′(w(1 − τ(ρ′, û(ρ′)))). The utilitarian

criterion writes:

∂W0(ρ
′, U0)

∂ρ′
= (1− U0)Ve1(ρ

′, U0) + U0Vu1(ρ
′, U0) = Ve1(ρ

′, U0) + U0Φ(ρ
′, U0)

The first order condition can be further simplified by using the conditions: ρ′ = ρ and
û(ρ′) = U0 which hold at the equilibrium when the insurance agency decides not to
deviate. It follows that:

Ve1(ρ
′, U0) = −τ ′1(ρ

′, U0)wu
′(w(1− τ(ρ′, U0)) + βλVe1(ρ

′, U0) + β(1− π1)λΦ(ρ
′, U0)

+βπ1û
′(ρ′)Ve2(ρ

′, U0)

⇒ (1− βλ)Ve1(ρ
′, U0) = −τ ′1(ρ

′, U0)wu
′(w(1− τ(ρ′, U0))

+β(1− U0)û
′(ρ′)(−wτ ′2(ρ

′, U0))u
′(w(1− τ(ρ′, U0))) + βU0λΦ(ρ

′, U0)

⇒ (1− βλ) [Ve1(ρ
′, U0) + U0Φ(ρ

′, U0)] = −τ ′1(ρ
′, U0)wu

′(w(1− τ(ρ′, U0))

+β(1− U0)û
′(ρ′)(−wτ ′2(ρ

′, U0))u
′(w(1− τ(ρ′, U0))) + U0Φ(ρ

′, U0)

Therefore, when the FOC is attained, one has:

−τ ′1(ρ
′, U0)wu

′(w(1− τ(ρ′, U0)) + β(1− U0)û
′(ρ′)(−wτ ′2(ρ

′, U0))u
′(w(1− τ(ρ′, U0)))

+U0Φ(ρ
′, U0) = 0

⇔ −
U0

1− U0
wu′(w(1− τ(ρ′, U0)))− β(1− U0)û

′(ρ′)w
ρ′

(1− U0)2
u′(w(1− τ(ρ′, U0)))

+U0

(

wu′(ρ′w) +
U0

1− U0
wu′(w(1− τ(ρ′, U0)))

)

= 0

which is equivalent to the condition expressed in the proposition.

B.2 Proof of Proposition 2.2

From equation (4), one gets:

g′′(π1)
dπ1

dρ′
= βλ [−wu′(ρ′w)− wτ ′1(ρ

′, û(ρ′))u′(w(1− τ(ρ′, û(ρ′))))

+û′(ρ′)(Ve2(ρ
′, û(ρ′))− Vu2(ρ

′, û(ρ′)))] + β(1− λ)û′(ρ′) (Ve2(ρ, û(ρ
′))− Vu2(ρ, û(ρ

′)))

As all agents provide the same search effort, one trivially has: π1 = 1−û(ρ′) which implies
that:dπ1

dρ′
= −û′(ρ′). Given that Vu2(ρ

′, û(ρ′)) = Vu2(ρ, û(ρ
′)) = 0, given the expression for

Ve1, one obtains:

−g′′(1− û(ρ′))û′(ρ′) = βλ

[

−wu′(ρ′w)− w
û(ρ′)

1− û(ρ′)
u′(w(1− τ(ρ′, û(ρ′))))

−û′(ρ′)
wρ′

(1− û(ρ′))2
u′(w(1− τ(ρ′, û(ρ′))))

]

+β(1− λ)

(

−û′(ρ′)
wρ

(1− û(ρ′))2
u′(w(1− τ(ρ, û(ρ′))))

)
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At the equilibrium, ρ′ = ρ. Regrouping the two terms containing the disincentive effect
û′(ρ′) in the left-hand side, the expression stated in the proposition obtains.

The denominator is necessarily strictly positive: g′′(1−U0)−
βρ′w

(1−U0)2
u′(w(1−τ(ρ′, U0))) >

0. As shown in the appendix A, it follows from the fact that it is equal to g′′(1 −

U0)
(

1− dπ1
dΠ1

)

where π1 is the effort of a given household, and Π1 is the average effort

of all households. Economically, a household’s effort depends, among others, on other
households’ effort. A necessary condition for obtaining a stable equilibrium is that the
derivative dπ1

dΠ1

be smaller than 1.

B.3 Proof of Proposition 2.3

Assume here that lim
c→0

u′(c) = +∞. For ρ′ −→
ρ′>0

0, it is clear that the tax rate becomes

arbitrarily small, the marginal utility of consuming the net wage is bounded below, while
the marginal utility of consuming the unemployment compensation becomes arbitrarily
large. Hence, the left-hand side tends to infinity.

As for the right-hand side, given the assumption g′′′(π) > 0, as ρ′ −→ 0, U0 ց,
and g′′(1 − U0) ր. One also checks that βρ′w

(1−U0)2
u′(w(1 − τ(ρ′, U0))) ց. Therefore, the

denominator is strictly bounded below. As for the numerator, it is the sum of 2 terms:
that with the marginal utility of employed workers is bounded above as ρ′ −→ 0. The
other one, with u′(ρ′w), is the product of a term bounded above and ρ′u′(ρ′w). As ρ′ −→

0, this term will necessarily become arbitrarily small, as compared to u′(ρ′w)
u′(w(1−τ(ρ′,U0)))

. If
the marginal utility of consumption remains bounded at c = 0, then the left-hand side is
continuous at ρ′ = 0, and is strictly positive, while the right-hand side tends to 0.

For ρ′ −→ ρmax, the left-hand side, being simply a continuous function, tends to-
ward its value for ρ′ = ρmax. As for the right-hand side, the numerator also tends to a
finite value, while the denominator tends to 0 (this corresponds to the highest possible
replacement rate of the equilibrium developed in Appendix A, where the two curves meet
tangentially only once). Consequently, the right-hand side becomes arbitrarily large.

B.4 Proof of Proposition 2.4

Let us rewrite equation (6) by multiplying it by u′(w(1−τ(ρ′,U0)))
u′(ρ′w)

. We obtain:

u′(ρ′w)− u′ (w(1− τ(ρ′, U0)))

u′(ρ′w)
=

ρ′β2λw
(
u′(w(1−τ(ρ′,U0)))

1−U0

+ U0[u′(w(1−τ(ρ′,U0))]
2

u′(ρ′w)(1−U0)2

)

U0

(

g′′(1− U0)−
βρ′w

(1−U0)2
u′(w(1− τ(ρ′, U0)))

) (13)

Regarding the right-hand side, consider first the denominator of the fraction. The
assumption ensures that, as π = 1−U0 increases, (1−π)g

′′(π) increases too. This implies
that U0g

′′(1 − U0) is decreasing in U0. The second term, U0
βρ′w

(1−U0)2
u′(w(1 − τ(ρ′, U0))),

increases as U0 increases, thus garanteeing that the denominator decreases with U0. We
know, from appendix A, that the denominator is always positive, and tends to 0 as ρ′

approaches ρmax. As for the numerator, one can easily check that it is strictly increasing
in ρ′. Therefore, the right-hand side is an increasing function of ρ′.
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As for the left-hand side of (13), it is a strictly decreasing function of ρ′: as ρ′ increases,
so does the tax rate, the after-tax wage is reduced, and the marginal utility of employed
workers rises. Conversely, the marginal utility of unemployed workers declines.

If the two sides of (13) should intersect, they would do it at most once. From proposi-
tion 2.3, we already know that the equation (6) will hold at least for one value of ρ′, which
is equivalent to stating that equation (13) will hold at least once, too. Therefore, the
equilibrium exists, and is unique. With the assumption (1 − π)g′′′(π) > g′′(π), we know
that there is a unique solution, so that, in the graph 1, we know that, for all 0 < λ 6 1,
there is a unique intersection between the two curves. Note, however, that the above
proof does not imply that the right-hand side of equation (6) is strictly increasing.

C Announced policy shocks in the analytical model

We here present the model when a policy shock decided at t = 0, applies only from t = 1
on. The recursive formulation of the value functions here requires to add a third variable:
ρ, the predetermined replacement rate, which holds for sure at the date considered, needs
be distinguished from ρ′, which will hold for sure at the next date. At date t = 0, the
replacement rate remains ρ. It is equal to ρ′ for sure at date t = 1. From t = 1 on,
if the current replacement rate is still ρ′, it will remain constant at the next date with
probability λ. Otherwise, it will revert back to ρ for ever. In any case, the value of the
future replacement rate is known one period ahead.

The search effort, as in the model developed in section 2, only depends on next period’s
replacement rate ρ′.25 The value functions of the agents are:

Ve (ρ, ρ
′, U) = max

π1
{u(w(1− τ(ρ, U)))− g(π1) + β[π1(λVe(ρ

′, ρ′, û(ρ′)) + (1− λ)Ve(ρ
′, ρ, û(ρ′)))

+ (1− π1)(λVu(ρ
′, ρ′, û(ρ′)) + (1− λ)Vu(ρ

′, ρ, û(ρ′)))]}

Vu (ρ, ρ
′, U) = max

π1
{u(ρw)− g(π1) + β[π1(λVe(ρ

′, ρ′, û(ρ′)) + (1− λ)Ve(ρ
′, ρ, û(ρ′)))

+ (1− π1)(λVu(ρ
′, ρ′, û(ρ′)) + (1− λ)Vu(ρ

′, ρ, û(ρ′)))]}

We here need to compute 3 partial derivatives for each employment status. The following
ones can be immediately computed:

∂Ve (ρ, ρ
′, U)

∂ρ
= Ve1 (ρ, ρ

′, U) = −wτ ′1(ρ, U)u
′ (w(1− τ(ρ, U)))

∂Ve (ρ, ρ
′, U)

∂U
= Ve3 (ρ, ρ

′, U) = −wτ ′2(ρ, U)u
′ (w(1− τ(ρ, U)))

∂Vu (ρ, ρ
′, U)

∂ρ
= Vu1 (ρ, ρ

′, U) = wu′(ρw)

∂Vu (ρ, ρ
′, U)

∂U
= Vu3 (ρ, ρ

′, U) = 0

25This follows from the separability of the instantaneous utility function in consumption and search
effort: the effort is independent from the current consumption level.

35



Regarding the remaining one, we note that:

∂Ve (ρ, ρ
′, U)

∂ρ′
= Ve2 (ρ, ρ

′, U) = Vu2 (ρ, ρ
′, U)

We further characterize this derivative, evaluated at date t = 0:

Ve2 (ρ, ρ
′, U0) = β [λ (π1û

′(ρ′)Ve3(ρ
′, ρ′, û(ρ′))

+π1Ve1(ρ
′, ρ′, û(ρ′)) + π1Ve2(ρ

′, ρ′, û(ρ′))

+(1− π1)û
′(ρ′)Vu3(ρ

′, ρ′, û(ρ′)) + (1− π1)Vu1(ρ
′, ρ′, û(ρ′)) + (1− π1)Vu2(ρ

′, ρ′, û(ρ′)))

+(1− λ) (π1û
′(ρ′)Ve3(ρ

′, ρ, û(ρ′)) + (1− π1)û
′(ρ′)Vu3(ρ

′, ρ, û(ρ′))

+π1Ve1(ρ
′, ρ, û(ρ′)) + (1− π1)Vu1(ρ

′, ρ, û(ρ′)))]

The equilibrium, as defined in 2.4, imposes that ρ′ = ρ and û(ρ′) = U0. The above
expression then simplifies as:

(1− βλ)Ve2 = βλπ1û
′(ρ′) (−wτ ′2(ρ

′, U0)u
′(w(1− τ(ρ′, U0))))

+βπ1 (−wτ
′

1(ρ
′, U0)u

′(w(1− τ(ρ′, U0))))

+β(1− π1)wu
′(ρ′w) + β(1− λ)π1û

′(ρ′) (−wτ ′2(ρ
′, U0)u

′(w(1− τ(ρ′, U0))))

Using the expressions for τ ′1 and τ ′2, and the fact that π1 = 1− U0, we obtain:

(1− βλ)Ve2(ρ, ρ
′, U0) = −

βwρ′

1− U0

û′(ρ′)u′(w(1− τ(ρ′, U0)))

+βwU0 (u
′(ρ′w)− u′(w(1− τ(ρ′, U0))))

This leads to this version of the Baily-Chetty condition:

u′(ρ′w)− u′ (w(1− τ(ρ′, U0)))

u′ (w(1− τ(ρ′, U0)))
=

ρ′û′(ρ′)

U0(1− U0)

As for û′(ρ′), it is easy to see that the first order optimality condition corresponds to that
of the baseline model, with λ = 1.

D The case of announced policy shocks with repeated

choices in the simulated model

We here present the time consistent model in the case where a policy shock decided at
t only applies from t + 1 on. Apart from this, all other assumptions regarding agents’
preferences, job flows, and the repeated public choice, remain unchanged.

We however need to keep track of two different replacement rates: ρ, which is currently
applying at date t, and ρ′, known as of date t, but applying from t + 1 on. It is easy
to verify that the search effort is independent from the current replacement rate, and
depends on all future replacement rates (among which, only tomorrow’s is known with
certainty). This guarantees that the law of motion of the economy depends on next
period’s replacement rate only. The modified agent’s program writes:
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V (e, Ut, ρ, ρ
′) = u(w (1− τ(U, ρ))) + β [(1− δ) (λV (e, U ′, ρ′, ρ′)

+ (1− λ) V (e, U ′, ρ′,Φ(U ′))) + δ (λV (u, U ′, ρ′, ρ′)

+ (1− λ) V (u, U ′, ρ′,Φ(U ′)))]

s.t.

U ′ = Γ (U, ρ′)

V (u, U, ρ, ρ′) = max
s

u(ρw (1− τ(U, ρ)))− ζ(s)

+β [π(s) (λV (e, U ′, ρ′, ρ′) + (1− λ)V (e, U ′, ρ′,Φ(U ′)))

+(1− π(s)) (λ V (u, U ′, ρ′, ρ′) + (1− λ)V (u, U ′, ρ′,Φ(U ′)))]

s.t.

U ′ = Γ (U, ρ′)

(14)

The modified utilitarian criterion evaluated at date t is:

Φ(U) = argmax
ρ̃

{UV (u, U, ρ, ρ̃) + (1− U)V (e, U, ρ, ρ̃)}

In particular, the chosen replacement rate is independent from the current one (ρ), be-
cause, as the insurance agency maximizes the welfare, the current replacement rate is
predetermined; it only affects the current instantaneous utility of the agents with no
interaction whatsoever with either the current search effort of the unemployed, or the
expected part of the intertemporal utility.

The modified equilibrium consists of the choice rule Φ (U) and the law of motion for
unemployment Γ (U, ρ′) such that:

1. Given the law of motion for unemployment and the choice rule , V (ε, U, ρ, ρ′) , ε =
e, u is the value function solution to program (14), and s (u, U, ρ′) is the effort rule,

2. Given the effort rule, and for any state of the economy (U), and for any future
replacement rate ρ′, next period’s unemployment rate, U ′, implied by the effort
rule, is consistent with the expected law of motion Γ (U, ρ′),

3. Given the above value function, the maximization of the utilitarian criterion at each
date is consistent with the expected policy rule Φ (U):

∀U,Φ (U) = argmax
ρ̃

(1− U) V (e, U, ρ, ρ̃) + UV (u, U, ρ, ρ̃) ,

E Numerical algorithm of the time-consistent equi-

librium model

In this model, there are 3 state variables: the current unemployment rate Ut, the current
replacement rate ρt and the current employment status of the considered agent, i. Apart
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from the employment status, which can take only 2 values (employed or unemployed),
the other two variables are continuous ones. We resort to standard grid discretization
techniques to approximate these variables. Uniform grids have been chosen: NU (resp.
Nρ) points for the grid on Ut (resp. on ρt) as the range of possible values is not too wide.
Moreover, once the equilibrium has been found, we can zoom in on these ranges, thus
increasing the accuracy of our algorithm.

The algorithm consists of a fixed point in the following 2 rules: (i) the choice rule
which relates the current public choice in terms of the replacement rate ρt to the current
unemployment rate Ut, and (ii) the law of motion for the unemployment rate Ut+1 which
relates this variable (future value) to Ut (current value) and ρt.

As the aggregate state is exhaustively described by Ut and ρt, there are exactly NU×Nρ

(resp. NU) points where the law of motion for unemployment (resp. the public choice
rule) has to be computed.

Our strategy consists in:

1. making an initial guess on values for the 2 rules over the grid,

2. given these rules, computing the value functions of the agents and the search effort
of unemployed households,

3. given the search effort function, computing on the NU ×Nρ grid the law of motion
of unemployment and given the value functions, computing the public choice rule
on the NU grid by maximizing the utilitarian criterion,

4. comparing the obtained law of motion and public choice rule with the ones postu-
lated ex ante. If they are close enough, stop, otherwise, update the ex ante functions
by applying a relaxation method.

5. once the convergence is over, simulating the temporal path of the economy by
starting with a given aggregate state (U0, ρ0), and iterating forward. At every
period with probability 1−λ, let the public authority choose the replacement rate.
Stop when the state of the economy has fully stabilized.

The 2 rules are not simultaneously updated. Rather, we proceed with nested loops, each
of which being devoted to the convergence of one of the above 2 rules. Besides, in practice,
the computed law of motion and public choice rule need be smoothed a little when they
are updated. Indeed, the algorithm rests on iterating on and updating these functions
a large number of times, and at each stage, the numerical computation is only valid up
to a certain degree of accuracy. In the absence of this smoothing, a slight perturbation
could grow bigger at each iteration and prevent the algorithm from converging properly.

The public choice rule is smoothed by calculating the OLS line and taking a weighted
average of the obtained line and the calculated rule (relaxation method). The law of
motion, for each level of the replacement rate, is smoothed by applying the OLS on the
first difference of the function, and taking a weighted average of the obtained function and
the computed one. Given that we are searching for a stable equilibrium, once it has been
numerically found, we can zoom in on the two grid windows, so that the two functions can
be approximated with a high precision by the linear and quadratic smoothing functions.
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F Equilibrium definition of the time-consistent choice

on the UI time-profile

The equilibrium consists of the choice rules (Φs (Us, Ul) ,Φl (Us, Ul)) and the laws of mo-
tion for unemployment (Γs (Us, Ul, ρs, ρl) ,Γl (Us, Ul, ρs, ρl)) such that:

1. Given the laws of motion for unemployment and the choice rules , V (ε, Us, Ul, ρs, ρl) , ε =
{e, s, l} is the value function solution to program (11), and s (ε, Us, Ul, ρs, ρl) , ε =
{s, l} is the effort rule,

2. Given the effort rule, and for any state of the economy (Us, Ul), and for any
current replacement rate time-profile (ρs, ρl), next period’s unemployment rates,
(U ′

s, U
′

l ), implied by the effort rule, are consistent with the expected laws of motion
(Γs (Us, Ul, ρs, ρl) ,Γl (Us, Ul, ρs, ρl)),

3. Given the above value function, the maximization of the utilitarian criterion at each
date is consistent with the expected policy rule (Φs (Us, Ul) ,Φl (Us, Ul)):

(Φs(Us, Ul),Φl(Us, Ul)) = argmax
ρ̃s,ρ̃l

{UsV (s, Us, Ul, ρ̃s, ρ̃l) + UlV (l, Us, Ul, ρ̃s, ρ̃l)

+(1− Us − Ul)V (e, Us, Ul, ρ̃s, ρ̃l)}
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